10 Migliori

jupyter notebook

di Maggio 2025
Sono 2 le recensioni trovate e analizzate.
Compralo su Amazon.it

Caratteristiche del prodotto

Get started solving problems with the Python programming language!This book introduces some of the most famous scientific libraries for Python: * Python's math and statistics module to do calculations * Matplotlib to build 2D and 3D plots * NumPy to complete calculations on arrays * Jupiter Notebooks to share results with a team * SymPy to solve equations * PySerial to control an Arduino with Python * MicroPython to control an LEDThis book is great for budding engineers and data scientists. The text starts with the basics but finishes with topics rarely included in other engineering and data science programming books like SymPy and PySerial and MicroPython.
Compralo su Amazon.it

Caratteristiche del prodotto

Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.What You'll Learn Master interactive development using the Jupyter platformRun and build Docker containers from scratch and from publicly available open-source imagesWrite infrastructure as code using the docker-compose tool and its docker-compose.yml file typeDeploy a multi-service data science application across a cloud-based systemWho This Book Is ForData scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Compralo su Amazon.it

Caratteristiche del prodotto

Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanationsBook DescriptionPython is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform.IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning.The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theoryWho this book is forThis book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods. Table of ContentsA Tour of Interactive Computing with Jupyter and IPythonBest Practices in Interactive ComputingMastering the Jupyter NotebookProfiling and OptimizationHigh-Performance ComputingData VisualizationStatistical Data AnalysisMachine LearningNumerical OptimizationSignal ProcessingImage and Audio ProcessingDeterministic Dynamical SystemsStochastic Dynamical SystemsGraphs, Geometry, and Geographic Information SystemsSymbolic and Numerical Mathematics
Compralo su Amazon.it

Caratteristiche del prodotto

A definitive guide to PyCharm to help you build business-oriented Python applications ranging from modern web development to data scienceKey FeaturesLearn basic to advanced PyCharm concepts to improve efficiency of your Python projectsWork through practical examples that focus on efficient application development with PyCharmExplore advanced features in PyCharm such as code automation, version control, and GUI debuggingBook DescriptionJetBrain’s PyCharm is the most popular Integrated Development Environment (IDE) used by the Python community thanks to its numerous features that facilitate faster, more accurate, and more productive programming practices. However, the abundance of options and customizations can make PyCharm seem quite intimidating.Hands-on Application Development with PyCharm starts with PyCharm’s installation and configuration process, and systematically takes you through a number of its powerful features that can greatly improve your productivity. You’ll explore code automation, version control, graphical debugging/testing, management of virtual environments, and much more. Finally, you’ll delve into specific PyCharm features that support web development and data science, two of the fastest growing applications in Python programming. These include the integration of the Django framework as well as the extensive support for IPython and Jupyter Notebook.By the end of this PyCharm book, you will have gained extensive knowledge of the tool and be able to implement its features and make the most of its support for your projects.What you will learnExplore PyCharm functionalities and what makes it stand out from other Python IDEsSet up, configure, and customize your Python projects in PyCharmUnderstand how PyCharm integrates with Django for web developmentDiscover PyCharm's capabilities in database management and data visualizationPerform code automation, GUI testing, and version control in PyCharmIntegrate interactive Python tools such as Jupyter Notebooks for building virtual environmentsWho this book is forIf you’re a beginner or an expert Python user looking to improve your productivity using one of the best Python IDEs, this book is for you. Basic knowledge of Python programming language is expected. Table of ContentsIntroduction to PyCharm - The Most Popular IDE for PythonInstalling and Configuring PyCharmCustomizing Interpreters and Virtual EnvironmentsEditing and Formatting with EaseVersion Control with Git in PyCharmSeamless Testing, Debugging, and ProfilingWeb Development with JavaScript, HTML, and CSSIntegrating Django in PyCharmUnderstanding Database Management with PyCharmBuilding a Web Application in PyCharmTurning On Scientific ModeDynamic Data Viewing with SciView and JupyterBuilding a Data Pipeline in PyCharmMore Possibilities with PyCharm PluginsFuture Developments
Come assegniamo i nostri punteggi?
Leggi di più.
zimbrablog.fr sfrutta un software realizzato dai nostri esperti che prende in considerazione le specifiche dei vari prodotti, la loro reputazione online, le valutazioni delle persone che lo hanno comprato, la reputazione del brand, il prezzo e altri elementi che ci aiutano a stabilire la bontà di un articolo. Se volete scoprire di più su di noi potete cliccare qui.
7.9
Qualità prodotto
8.1
Brand
9.3
Opinioni
7.9
Qualità prodotto
8.1
Brand
9.3
Opinioni
Come assegniamo i nostri punteggi?
Leggi di più.
zimbrablog.fr sfrutta un software realizzato dai nostri esperti che prende in considerazione le specifiche dei vari prodotti, la loro reputazione online, le valutazioni delle persone che lo hanno comprato, la reputazione del brand, il prezzo e altri elementi che ci aiutano a stabilire la bontà di un articolo. Se volete scoprire di più su di noi potete cliccare qui.
Compralo su Amazon.it

Caratteristiche del prodotto

Double sided wide ruled journal sheets. Professionally designed soft matte cover. Portable and lightweight size for work, desk or school. Perfect for jotting down thoughts, taking notes, writing, organizing, goal setting, meeting notes, doodling, drawing, lists, journal and brainstorming. Notebooks and journals make a great gift for friends, family or coworkers for any occasion.Product Details:Cover: Soft, matte paperback coverPages: 100 pages( with margin)/ 50 sheets Size: Large format 6.0" x 9.0" (approximately A5) pagesPerfect for all writing mediums.
Compralo su Amazon.it

Caratteristiche del prodotto

Isn't it lovely when something practical can also be something beautiful? That's what you find in this one-of-a-kind journal notebook: The premium matte cover features watercolor flowers over a soft purple background. Inside, you'll find 110 college-ruled pages, with a small floral accent on the corners. There's ample space for you you to jot down personal reflections, creative writing, or notes. Great for use as a journal, notebook, prayer book, scripture writing journal, or composition book. You're sure to feel inspired with this beautiful notebook journal on hand! Grab one for yourself--or buy a few to share. This notebook makes a lovely gift for teachers, coworkers, family members, and friends.
Compralo su Amazon.it

Caratteristiche del prodotto

this notebook To write music algorithms , It can be bought as a gift for someone you love, 100 pages with high quality you'll love .Feel free to buy your notebook
Compralo su Amazon.it

Caratteristiche del prodotto

This notebook is suitable for learning to write.Specifications: Cover Finish: Matte Dimensions: 6" x 9" (15.24 x 22.86 cm)Interior: line, White Paper, UnlinedPages: 24
Compralo su Amazon.it

Caratteristiche del prodotto

Double sided wide ruled journal sheets. Professionally designed soft matte cover. Portable and lightweight size for work, desk or school. Perfect for jotting down thoughts, taking notes, writing, organizing, goal setting, meeting notes, doodling, drawing, lists, journal and brainstorming. Notebooks and journals make a great gift for friends, family or coworkers for any occasion.Product Details:Cover: Soft, matte paperback coverPages: 100 pages( with margin)/ 50 sheets Size: Large format 6.0" x 9.0" (approximately A5) pagesPerfect for all writing mediums.

Stai cercando i migliori jupyter notebook? Allora sei nel posto giusto! Abbiamo creato una classifica con i 10 modelli che reputiamo migliori, la nostra graduatoria prende in considerazione diversi parametri come il prezzo, la reputazione del brand, l’apprezzamento e le critiche nel web, le recensioni delle persone che lo hanno acquistato e anche se ci sono eventuali offerte.

Guida all’acquisto dei migliori jupyter notebook

Siamo sicuri che grazie alla nostra classifica troverai il prodotto che più rispecchia le tue esigenze, in ogni caso prima di procedere all’acquisto ti vogliamo dare alcuni consigli che potranno tornarti utili. Quando fai acquisti online (e anche in negozi fisici) è sempre buona norma segnarsi le caratteristiche che cerchiamo in un determinato prodotto, dopo che abbiamo segnato queste specifiche possiamo analizzare la classifica e vedere se il prodotto ha tutto quello che cerchiamo (clicca sul pulsante “Maggiori informazioni” dentro le scheda prodotto della classifica per vedere informazioni interessanti che possono tornarti utili per la scelta).

Non dimenticarti di fissare un budget per la spesa, anche in questo caso ricorda che spendere meno non è sempre una buona idea, a volte per risparmiare rinunciamo a caratteristiche fondamentali che in futuro ci faranno pentire della nostra scelta perché sentiamo la mancanza di quella particolare funzione di cui abbiamo bisogno. In questo caso la scelta migliore è di aumentare un pò il budget e cercare di capire se così riusciamo ad avere tutto quello di cui abbiamo necessità.

Anche spendere troppo per funzioni che non sono necessarie non è una buona scelta, può capitare che spendiamo di più e poi non utilizziamo a pieno il bene che abbiamo acquistato. Bisogna solo prestare un pò di attenzione nel momento dell’acquisto.

Inoltre, a volte, è meglio acquistare da marchi più conosciuti perché generalmente riescono a fornirti una migliore assistenza in caso di problemi (n.b. non è sempre detto, a volte capita proprio l’opposto) ed è per questo che nella nostra lista cerchiamo di tenere i migliori brand di jupyter notebook.

Ecco 3 jupyter notebook che consigliamo

Machine Learning for Hackers: R and Jupyter Notebooks

jupyter notebook - 1 posto

Al primo posto, sul gradino più alto del podio, abbiamo Machine Learning for Hackers: R and Jupyter Notebooks, vi citiamo alcuni punti di forza di questo prodotto:

  • What is machine learning (ML)? What is data science (DS)? Ask any two data scientists either question and you will get two different answers. These subjects encompass a wide variety of data analysis techniques. Some of these techniques were invented and in common practice long before the invention of computers. Many new ones are being invented every day. Broadly speaking, these techniques encompass classification and regression, but both ML and DS have a wider reach. This is a book for hackers, programmers, engineers, scientists, and anyone else who wants to get down and dirty with machine learning but doesn’t necessarily have the mathematical sophistication to learn a lot o advanced theory. Think of it as a lab manual in machine learning. The target audience is advanced community college students and lower division math, computer, and engineering students. Online supplement includes jupyter notebooks that contain all code examples discussed in the book.

Svantaggi:

  • Nessuna nota negativa da segnalare.

Problem Solving with Python 3.7 Edition: A beginner's guide to Python & open-source programming tools

jupyter notebook - 2 posto

Il secondo prodotto che suggeriamo è Problem Solving with Python 3.7 Edition: A beginner's guide to Python & open-source programming tools, per completezza vi elenchiamo alcune caratteristiche interessanti:

  • Get started solving problems with the Python programming language!This book introduces some of the most famous scientific libraries for Python: * Python's math and statistics module to do calculations * Matplotlib to build 2D and 3D plots * NumPy to complete calculations on arrays * Jupiter Notebooks to share results with a team * SymPy to solve equations * PySerial to control an Arduino with Python * MicroPython to control an LEDThis book is great for budding engineers and data scientists. The text starts with the basics but finishes with topics rarely included in other engineering and data science programming books like SymPy and PySerial and MicroPython.

Svantaggi:

  • Nessuna nota negativa da segnalare.

Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server (English Edition)

jupyter notebook - 3 posto

Anche se è al gradino più basso del podio è un’ottima alternativa ai già citati prodotti, ecco delle funzioni che potrebbero esservi utili:

  • Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller.It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies—Python, Jupyter, Postgres—as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms.What You'll Learn Master interactive development using the Jupyter platformRun and build Docker containers from scratch and from publicly available open-source imagesWrite infrastructure as code using the docker-compose tool and its docker-compose.yml file typeDeploy a multi-service data science application across a cloud-based systemWho This Book Is ForData scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers

Svantaggi:

  • Nessuna nota negativa da segnalare.

Conclusione

Per concludere vi ringraziamo di cuore per aver letto la nostra guida e se il sito vi è stato utile o se vi è piaciuto aggiungeteci ai preferiti e condividetelo con i vostri amici! Inoltre se avete tempo potreste anche leggere i 10 migliori notebook png.

Categorie popolari